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Abstract

Based on a data matrix X = (XI,. .,): pxk with independent columns

N ,E), and an independent Wishart matrix S: pxp .W(nE), testimators dom-

inating the best equivariant estimators of X and W are obtained under two types

of entropy loss. For simultaneous estimation of the mean vector and the variance

covariance matrix of a multinormal population, a suitable entropy loss is developed

and testimators dominating the pair consisting of the sample mean vector and the

best multiple of the sample Wishart matrix are derived, A technique of SINHA

(Jour. Mult. Analysis, 1976) is heavily exploited.
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INADMISSIBILITY OF THE BEST EQUIVARIANT
ESTIMATORS OF THE VARIANCE-COVARIANCE

MATRIX AND THE GENERALIZED VARIANCE UNDER ENTROPY LOSS

by

1 2Bimal K. Sinha and Malay Ghosh

University of Pittsburghand.University of Florida

1. INTRODUCTION. Suppose YI,...,Yn are iid N(&,o2). If is known, then the best

rwscale invariant estimator of a2 is given by
i-(n+2)- I,-lCY-

q0 (Y1 ,...,Yn)= n- 2 (1.1)

It is proved in Girshick and Savage (1951), and Hodges and Lehmann (1951) that
2

is an admissible estimator of a under squared error loss. However, if is unknown,

then Stein (1964) has shown that the natural estimator

1 - 2-"I(YI,...,Y n )  (jn+l) ill(Yi - ), (1.2)

of a 2(1- n 'i=Yi) is inadmissible under squared error loss, and is dominated by

estimators of the form

i(Yin 2 -1 n ( 2

O(YI ,...,n min((n+l)-l(i= ( ), (n+2) i -0 ) ]  (1.3)
2

for every fixed constant E0" The estimator 0 of a can be viewed as a preliminary

test estimator (testimator) which uses the estimator (n+l)-l 1i-l for a

if the F-statistic n(Y- 0) 2/{(n-l)-lIi1 (Yi-1)2 } for testing H0 : = 0 against

the alternatives H1 : 0 exceeds (n-l)/(n+l) (thereby rejecting H at a certain
-°0
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-1 'n 2 ohrie ti
significance level), and uses the estimator (n+2)-linl(Yi-%)2otherwise. Stein

(1964) considered the more general regression analog of this problem in the canonical

set up. Brewster and Zidek (1974) have shown that the results extend to a more

general loss including the entropy loss (first introduced in James and Stein (1961))

given by

L(a,a2 2 a/a 2 - log(a/o2) - 1, (1.4)

to which attention will be restricted in this paper.

There are two possible multivariate extensions of the above results. One can

consider estimation of the variance-covariance matrix or the generalized variance

I E in a multinormal set up. To fix ideas, let Y1,. .. ,Y be iid N(jE), where each

Y. is pxl. When both and Z are unknown, the minimal sufficient statistic for these1127 --

parameters is (X,S), where X = l and S - Im (Y T(_=m =iYi).~0 -M ' _m i i ~ m ~1 ~M ~-

Haff (1979b, 1980, 1982) and Dey and Srinivasan (1985) have considered estimation

of E under several losses including the entropy loss

L ( E ) - tr(E - I )- logjE7 Il- p. (1.5)

They propose estimators Z of E which are functions of the Wishart matrix S alone,

but do not consider any Stein-type estimators (i.e. testimators).

In this note, we consider estimation of Z and Z-1 each under the entropy losses

L and
1

L (Z,7) = tr(7 - 1) - logi£ -l- p. (1.6)

To our knowledge, the loss (1.6) has never been considered before either for

estimating Z or Z- . Haff (1977, 1979a, 1979b) considers estimation of Z- under

various quadratic losses. For us, the loss (1.6) seems to be as natural as (1.5),

and can be motivated as follows. Suppose S is a random variable having a p-

dimensional Wishart distribution with degrees of freedom n and parameter E(to be



denoted by W (n,E)). Write fE(s) as the pdf of S. Then, a meaningful loss in es-
p I --

timating E by A (or E- 1 by A7I) is the entropy distance between W (n,E) and W (n,A),

and is given by

EE[log f -(S] = (n/2)L2 (A,E). (1.7)

Use of an estimator E in place of A gives rise to (1.6).

In Section 2 of this note, we consider estimation of E and - each under the

I losses (1.5) and (1.6), and develop Stein-type testimators dominating the best

multiples of the Wishart matrix and its inverse. A technique of Sinha (1976) is

heavily exploited. Incidentally, it may be remarked that for the loss (1.6) no

Haff-type improved estimator over the best equivariant estimator is readily available.

We also consider simultaneous estimation of the mean vector and the variance-

covariance matrix, and develop certain estimators dominating the pair consisting

of the sample mean vector and the best multiple of the Wishart matrix under a

suitable entropy loss to be developed in Section 2.

In Section 3, we consider estimation of IEI. This problem has received attention

in Shorrock and Zidek (1976), and Sinha (1976). In these papers Stein-type testima-

tors are developed, and are shown to dominate the best multiple of ISI under squared

error loss. Similar testimators are developed in Section 3, and are shown to dominate

the best multiple of ISI under the two entropy losses

L (IEI ,Il) " 0 /j1l- log(ljI/lEj)- 1 (1.8)

and

L2 (IEI,IE) - I/l l- og(I l - 1. (1.9)

Throughout this paper, for two matrices A and B of the same order, A> B implies

that A- B is nonnegative definite. In the remainder of this section, we state with-
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out proof three matrix lemmas which are used repeatedly in Section 2. The proofs

of these lemmas are quite straightforward.

LEMMA 1. Let F denote the class of all nonsingular matrices. Then for any-p

Ae F and BE F ,

tr(AB) - log[Bj>logAj + p, (1.10)

equality holding iff B - A-1.

LEMMA 2. Suppose A> 0 and B> C, where A, B, C and the null matrix 0 are square

matrices of the same order. Then,

tr AB > tr AC. (1.11)

LEMMA 3. For any positive definite matrix A,

tr A - logIA - p> 0,

with equality iff A - I
N 4P

2. ESTIMATION OF E AND E- . Consider a multivariate normal linear model in its

canonical form. Suppose X =X 1 ,...,~~) is a pxk matrix with independent columns

Xi- Np(EVE), and let S be a p-dimensional Wishart matrix with degrees of freedom n

and parameter E distributed independently of X. We assume n> p+l and E.'s unknown.

Consider first estimation of E under the loss (1.5). As pointed out by Shorrock

and Zidek (1976), the above problem remains invariant under the full affine group

G acting on the space of pxk matrices (writing = ))

X -AX + B, &-A&+B, S-ASA T , Z-AZA , (2.1)

,i -l '', -f '.. .. ' i. i'- , .i' l. . ".f- i-. .' l -. .i -' .i- . i- " .f - i. i l i / --- - .- - i -, 7 "..'7 ' 21 i , *. -, . . " " ,. -. i i'[i
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where A is any nonsingular pxp matrix, and B is any pxk matrix. Then, any affine

equivariant estimator of E must be 6f the form

O(S)= cS, (2.2)

where c is a constant. Noting that E(S) = n , it follows that under the loss (1.5),
-i

the optimal choice of c minimizing the risk of cS under the loss (1.5) is c- n .

Following Sinha (1976), write S = WWT and U = W- X, where W is a pxp non-

singular matrix. In order to improve on the best affine equivariant estimator

n-S, consider the class C of estimators of E having the form E = (W,U) = WIPWT^

where q -= (UU T) is a pxp nonsingular matrix. This class C contains estimators

equivariant under a nonnormal subgroup H of G obtained from G by putting B- 0.

The special choice -= n-1 1 leads to the corresponding estimator 0 =WOWT

n-i S of E. In order to compute the risk R of c~ under the loss (1.5), first let
T ,I-p

X, AX, W, a AW, where A is a pxp nonsingular matrix such that AEA = Ip, p de-

noting the identity matrix of order p. Note that U- W x = W,1X,. Then, writing

E ,E as the expectation under Np( i,) for Xi;= l,...,p and Wp(n,Z) for S,

arid- ,inA , one gets
R, 0 = -1)[tr(WWT-)-.~ 10 IogW W T- - E PI

w E I [tr (WW*;) log- w - p

&*'I E t *. - w,,I logjI p1. (2.3)

Note that for comparing the risk performance of members within the class

C3 WPWT (under ,Z) - W, WT (under 4,I),it suffices to consider

TR, = E, [tr(W*W*)- logM]
- -p

- E[tr{ *( ,u)p} - logWLpl, (2.4)

, ..-.-.-.. '-" . - - -........... " . 4, . .-. 4. . . . . . . . . . . . . .
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where 4 1 (,u) E~ 1  (wIu= u), and E denotes expectation over the marginal
w - &*, I p

distribution of U.

To minimize R with respect to p, it suffices to minimize

llog (2.5)

with respect to W for every u. Using Lemma 1 with A= (,l( *,u) and B= p, it follows

that the expression in (2.5) is minimized when 1--p,(E*,u). However, this expression

involves not only u but also. We find next an upper bound for **(E*,u) free

from C,.

-1 T
LEMMA 4. i,(E ,u) < W(u) = (n+k) (I +uuT).

The proof of this lemma is deferred to the Appendix. Based on i(u), a testimator

is now constructed as follows.

Let O= WpWT = (n+k)-I(S+XXT). For estimating Z, define the testimator

-q if 0

=0 otherwise. (2.6)

Z
The corresponding p say p is given by

= iif .

?= otherwise. (2.7)

Remark 1. The estimator defined in (2.6) is a multivariate generalization of

Stein's (1964) univariate testimator. The condition < can be alternately ex-

pressed as XX T< (k/n)S <=> sup(£T XX T2)/(2T S) < k/n <-> largest eigenvalue of
~-- L#0 .. .

T-I
X S X< k/n, Thus, the estimator proposed in (2.6) is based on Roy's maximum root
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test. The test reduces for k- 1 to Hotelling's T test.

Remark 2. The condition ip < 0 can be alternately expressed as UU T< k/n <=> I UI1 < k/n
-0-

where 11j11 denotes the Euclidean norm.

The following theorem shows the dominance of the testimator over "

THEOREM 1. Under the loss (1.5),

R- < R for all C and E.o - -

Proof: Using (2.3), (2.4) and (2.7),

R- - R R- - R¢
0 R

= E[tr(,;l(i -- ip )- log--]I <, . (2.8)

From Lemma 4, , > -. Now, using Lemma 2 with A= - B= and C -

one gets from (2.8),

R- < - +

- -E[tr(_Op-)- log lwn - p]I -

< 0, (2.9)

where in the last step of (2.9), one uses Lemma 3. The proof of Theorem 1 is

complete from (2.8) and (2.9).

T ,Remark 3. Quite generally, given any estimator WqW , defining € = ¢ if € <

= otherwise, where 0 , WPW and i is defined in Lemma 4, one gets R- < R for all

and Z (vide Sinha (1976)). This enables one to develop sequential testimators

as in Sinha (1976).
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Next we consider the loss given in (1.6). In this case, the best multiple

of S (minimizing the risk) is given by (n-p-l)-1 Let 0(S) = (n-p-l) -ls,
00 -lI

= WI WT so that = (n-p-l)-l I . Once again, we consider a competing class

T TC of estimators of the form f(S) = Wp(UU )W . Proceeding as in (2.3), under the

loss (1.6), the risk of p is given by

T -1-1 T -1 -1
R = Er [tr{ (W*W*) I -loj W*W* ) Ij-log 14 I- p11.

- -p

Hence, for comparing estimators of the given type , it suffices to consider

R =E I [tr{(WTw*)-1-}- logi-1 ]. (2.10)
-' ~p ..

Using Lemma 1 once again, it follows that the optimal choice of i is E [(ww* lu

, -p
= pl(E*,u) (say). Similar to Lemma 4, we now prove the following lemma.

LEMMA 5. ( *I,u)< (n-p-l+k)-l CI+uu) = ip(u) (say).

The proof of Lemma 5 is also deferred to the appendix. Let 0o(S)=W 0(u)WT .

Similar to the previous situation, we define the testimator

!0(S) = 0(S) if 0(s)< (s)

= %0(S) otherwise. (2.11)

Accordingly, the t value corresponding to 0 will be given by

Z

=o(u) 40 o(u) if 0o(u)< oo ( u )

: 0 0 (u) otherwise. (2.12)

Remark 4. Note that n0(S) (n-p-l+k)- (S+Tr). Hence, the condition 0(S)< 00(S)

can be equivalently expressed as largest eigenvalue of X'S -X< k/(n-p-l). Thus,

in this case also, the preliminary test is based on Roy's maximum root test.
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We now prove the following theorem.

THEOREM 2. Under the loss (1.6), R_ < R
0 o

Proof: Write

RO -R R. - Rso (0 -oo
0 00 O -00~

-E[tr{l *'U) log - l (2.13)

1 0 - 00' "00 .s-0

In view of Lemma 5, putting A = B0 - = C = (,U) in Lemma 2 one

00, B OandC

gets

rhs of (2.13)

< E[tr(%(k - ~ + logyP 0  ]I'i_ [~' - 00 -
=E[tr( O Oo)- logi; 0,%-1-p -<-

< 0,0-0 
(2.14)

where in the last step of (2.14), one uses Lemma 3. The proof of the theorem is

complete from (2.13) and (2.14).

Remark 5. Here again, as explained in Remark 3, one can develop sequential testima-

tors each dominating the best equivariant estimator o0(S).

We consider now the simultaneous estimation of the mean vector and the variance-

covariance matrix under entropy loss. Writing f ,E(YI" "''Yn ) as the joint pdf of n

iid N (w,E) variables, it follows that taking the loss L((ii,E), (Z,A)) as the entropy

distance between the N (u,E) and N (X,A) distributions, and assuming n> p+l forP - ~ P ~ ~

purposes of estimation, one gets

• . . . _ - ...- i • -; lil 7 : ~ i~ -. i - . i~ j . ; .. . . . ..i"ii-
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l
f r(Y1,.,

L E [log " ~

li'z n

-11 T-1--
E [log~)+n(/ Z) S (-)}IY1)E Yj~

+ :.{trCA-lS0) +n(Y- Z)TzI7 E )
2i

(where =n- Jlffli SO .= iI -)~ -y)T

n

= logEA-1 - _
2 2

n -

r fCE-l) +(L- ) + tr(EA )- log I -] - p (2.15)

Thus if one uses the best location and scale invariant estimators Y and (n-p-l)-iS

for p and E respectively, in view of the loss (2.15), it suffices to improve on Y

and (n-p-l)- S separately. From James and Stein (1961), it follows that under the~0

loss

L (P) - (,-T1(Yu)T- 1),

Y is improved by the estimator 6 0(I'S) = (1 p-2 )Y, provided p> 2..-- nYrs iY

Again the loss

L^(E,A) = tr(ZA-)- logjZA-lI - p

is the same as the loss (1.6), and taking k= 1 in Theorem 2, it follows that

(n-p-l)-S 0 is dominated by the testimator

6 (YS 0 ) = (n-p)l (S +nYY T) if (n-p)-1 (S+nY T) < (n-p-i)-1s
~ 00 .0

. -1
- (n-p-i) - otherwise.

-0
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Thus, under the loss (2.15), (Y,So0 is dominated by (60,6i) for 1;> 2. For p< 2,

(Y,SQ) is of course dominated by (Y,6I). Finally, for p> 2, sequential testimators

each dominating (!,So) for the loss (2.15) can be easily obtained (vide Sinha (1976)).

-1Next we consider estimation of the precision matrix E under the losses (1.5)
and (1.6) (calling L1(E, ) and L2(E,E ) as LI(-,E- and L2( - respectively).

Consider the class of estimators of the form 4 (wtwT) for E so that, under Lit

the choice p = n I leads to the best multiple (of S- ) estimator nS of E
~ p -1 T

Recalling that O(S) - (n+k) (S+XX ), it follows that defining 0 as in (2.6), the

best equivariant estimator nS = 4l(S) is dominated by 4-(S). Similarly, under

- the loss L2, the best equivariant estimator (n-p-l)S - I(S) of E is dominated

by I (S) defined in (2.11). Again, in each case sequential testimators are easily

obtained.

3. ESTIMATION OF Ell. Consider the same set up as of Section 2. Estimating IEI

by a, assume the loss to be given by

Ll(a,IEI) - log - 1. (3.1)II l

Following Shorrock and Zidek (1976) and Sinha (1976), it follows that the best equi-

variant estimator of Izi is c0lSI where co is determined from minimizing 9Z. I
- -P

(cISI - logc) with respect to c. This gives

is (E. I 1) -1 - (n-p)'./n!

- p

Following Stein's suggestion, and arguments as in Shorrock and Zidek (1976)
T-

" or Sinha (1976), we look for better estimators in the class 4(X,S) 4(X S ) S

.. d
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for some real valued function 4. Under the loss (3.1), has the risk

RO M iE&,I[ (xTs-x) Ist - log4 (XTSlx)- log ISI- 1], (3.2)

where is defined as in Section 2. Write V = XTS- X so that given V = v, the

best choice of 4 (minimizing (3.2)) is given by (v)= (v) - [E (ISI - I01 1 .

Following the line of argument of Sinha (1976), one can easily show that

(v)< IIk Vt(n-p+k)./(n+k). = (v) (say). (3.3)

Then, it is easy to show using (3.3) and strict convexity of the loss (3.1) that

for every 4 defining 4(v) = min(,(v),%(v)), *(X TS- X)ISI dominates (X Ts-I X)ISI

under the loss (3.1). In particular, the estimator z- min{ (n-S)!tn ,(n-p+k).'S+XXTo

dominates {(n-p)./n.liS I under the loss (3.1). Note that Z is indeed a testimator

since the ratio IS+xxTI/ISI _ IL +xTs-1x1 is a MANOVA test statistic for H0: =0

against H 0.

For the other loss L2 (a,tIE) defined by

L(a,t ) I"Z- log 1 (3.4)2 a a

it follows that the best equivariant estimator of Zhis ciSt where c minimizes

--i ci-i + logc). This gives c - E {jSj - } = (n-p-2)!/(n-2)!Z'=I C-T I

p~ -1p
As before, we look for a better estimator in the class 4(X,S)= (X TS- x)jS I

* for some real valued function 4. Suhh a 0, under the loss (3.4), has the risk

R - E ,,Ip[l/((XT S-1 x) St) + log4(X TS-I X) + logis - 11 (3.5)

-- p

which is minimized for a given V- v by choosing 4(v) = M(v) - E ,,IpSI- 1 jv-. v).

Following Sinha (1976), we can easily show that

.(v)< tIk+v (n-p-2+k)4/(n-2+k)! l = o(v) (say). (3.6)
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Then, for every W) defining P(v) -min(tp(v), (0) it follows that ;(TSlx)Is

T -1dominates ip(X S X)jS1 under the loss (3.4). En particular, the testiniator

Z =mini{(n-2)! i~I, (n-p-2+k)!IS IXXTI} dominates {(n-p-2)!/(n-2). ISI underL(n-2)! (n-2+k)!2

loss.

As in Sinha (1976), it is possible to easily derive sequential testimators ofIE

under both the losses. Details are omitted.
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APPENDIX

Proof of Lemma 4. Since, I + uuT is positive definite, there exists a nonsingular Q

T T
such that QQ I, + uu . Write W** f WQ. Then the inequality t,(&,,u)< p(u) <=>

-l-1T T T T T
S(&,u)> (u) can be alternately expressed as Q E (W**W**Iu)Q (n+k)Q Q

- p

Hence, it suffices to show that

S T(W **IU)> (n+k)I for all u, ,. (A.1)

- P - - -
p-

Note that (A.1) can be alternately expressed as

E: T W  W **£u)> (n+k) T (A.2)

• " for all Z(# 0), u and , From (2.19) of Sinha (1976), it follows that a sufficient

condition for (A.2) to hold is that

n-p+k
T 2 TT 1 T T

2IwwTI 2 U w w)exp[- -(ww 2wu**)]dw

WEE

* W"- 2  w TI 2exp[- 2(w - 2wu**)]dw

>(n+k) T Z (A.3)

for all £# 0, u"Q -lu and ,. In (A.3) and in what follows, we use the notation

w for w** (and accordingly W for W**).

T TUse now the transformation Z = WLT , where L is an orthogonal matrix with its

first column vector equal to £/(TZ) 1/2 We write Z (Z...1z Then (A.3)

can be alternately expressed as

1 T T
2I... 2 (Zl)exp[- 1'tr(zz -2zu L ,)]dz

n-p+k
T 2 1 T T

2 IzzTI 2 exp[- 1tr(zz ULf p2  ... .. .. .

> n+k, where uL Lu,. (A.4)

2 -..
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Next, as in Sinha (1976), let A - I and
p p

. A - -z ..Zp) i+l ~i+l ~ i+l ~p +

T T 2 T 2 T

' -' i + l " z

p - 1, .. p-.-

i Then, following (220)-(2.21) of Sinha (1976) and noting that his w's are our z's,

we can express the left hand side of (A. 4), in Sinha's (1976) notation, as

E ~~n-~ [ Wnp~- ~-p+k
2 T A~ .W .2 .(WW )T  2 wTw

E[(WW) 2 (WT  A W A W W W

n-p~~k n-p+k -k
XEWTW 2 T2 T 2-~ - "" ~-Ii (A.5)

e g n w(i+l) A W is a noncentral chisquared variable with i.d.f.

and noncentrality parameter X 2 n A - TM1 (i). i. (i) .(1)' "",(p)
T T

Accordingly, using the fact that W > W.A.W. and proceeding as in Sinha (1976), we

get the expression in (A.5) > 2 (-2-) + p = n+k, where in the ultimate step, one

uses (2.22) of Sinha with r - (n-p+k)/2. The proof of Lemma 4 is complete.

Proof of Lemma 5. It suffices to show that

T T -1 -1T T
" - -- p.-.- P

for all Z(#0), u and , Defining Q as in the proof of Lemma 4, and using calculations

similar to (A.l)-(A.3), we find that (A.6) can be equivalently expressed as

T 2 T T -i T T
2w! (12 (w w) - )exp[- -tr(w -2wu,,dw

wE (- n-p+k

. - .. exp- 1-r(ww. -2wu* &.)]dw

-1 T
<(.-p-l+k) (2. it) (A.7)
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for all 1(# 0), u, . Q 1u and E,. Next make the transformation ZT - WL where

z - (El...,Zp ) and L is an orthogonal matrix with its first column vector equal to

Tl1/2 T -1 T T -1 T T -1 T T -1 T'
t/(2T)/2. Then, (ZZ ) (L W WL) -I  L (W W) L so that XT (W W) -/(2T z) is

the element in the first row and first column of (zT)-1  We denote this by (zz)
Now, writing uL L Lu,, CA.7) can be equivalently expressed as

n-p+k
2zT -1 1 T uT T2IzzTI 2 (zzT)]l* xp[ i .T TJ)T-

2 zz exp[- zzr(zz -2zuL*) dz

ZE E n-p+k

rT, 2 1 zT zT T
*j Izzi exp[-(z 2 -2z-E )d

f 2a
z ~ p

< (n-p-l+k) (A.8)

With the same A.'s (i= l,...,p) as defined in Lemma 4, it follows that

IzzTI (ZT z)(zT TA z T)...(ZTAAZZ)(ZTA )
.. p-p -p-l~-p -- -2-2-2 -1-1-1~

and

T - T -1T T
(z 1,1 Izz I Z (Z AZ)

(ZZT) z I-I p z 2.22

Accordingly, writing r = (n-p+k)/2, lhs of (A.8)

T )r  (ET r T r-1

* E[(Z AZ ) .. (ZZAZ)
-p--p-p -2 LlZ2

-1
< (2r-1) (using conditional argument as in the proof of Lemma 4 and (2.22)

of Sinha (1976))

-1
= (n-p+k-l)

The proof of Lemma 5 is complete.

I
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